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Abstract

Any attempt to introduce automation into the moni-
toring of complex physical systems must start from
a robust anomaly detection capability. This task
is far from straightforward, for a single definition
of what constitutes an anomaly is difficult to come
by. In addition, to make the monitoring process
efficient, and to avoid the potential for information
overload on human operators, attention focusing
must also be addressed. When an anomaly occurs,
more often than not several sensors are affected, and
the partially redundant information they provide can
be confusing, particularly in a crisis situation where
a response is needed quickly.
The focus of this paper is a new technique for at-
tention focusing. The technique involves reasoning
about the distance between two frequency distri-
butions, and is used to detect both anomalous sys-
tem parameters and “broken” causal dependencies.
These two forms of information together isolate the
10CUS of anomalous behavior in the system being
monitored.

1 Introduction

Mission Operations personnel at NASA have the task of deter-
mining, from moment to moment, whether a space platform
is exhibiting behavior which is in any way anomalous, which
could disrupt the operation of the platform, and in the worst
case, could represent a loss of ability to achieve mission goals.
A traditional technique for assisting mission operators in space
platform health analysis is the establishment of alarm thresh-
olds for sensors, typically indexed by operating mode, which
summarize which ranges of sensor values imply the existence
of anomalies. Another established technique for anomaly de-
tection is the comparison of predicted values from a simulation
to actual values received in telemetry. However, experienced
mission operators reason about more than just alarm thresh-
old crossings and discrepancies between predicted and actual
sensor values: they may ask whether a sensor is behaving
differently than it has in the past, or whether a single behavior
is resulting in—the particular bane of operators—a rapidly
developing alarm sequence.

Our approach to introducing automation into real-time sys-
tems monitoring is based on two observations: 1 ) mission

operators employ multiple methods for recognizing anoma-
lies, and 2) mission operators do not and should not interpret
all sensor data all of the time. We seek an approach for deter-
mining from moment to moment which of the available sensor
data is most informative about the presence of anomalies oc-
curring within a system. The work reported here extends the
anomaly detection capability in the SFLMON  monitoring sys-
tem [2, 3] by adding an attention focusing capability. This
work complements other work within NASA on empirical
and model-based methods for fault cliagnosis of aerospace
platforms [4, 5].

2 Background: The SEI.MON  Approach

Abnormal behavior is always defined as some kind of depar-
t ure from normal behavior. Unfortunately, there appears to be
no single, crisp definition of “normal” behavior. In the tradi-
tional monitoring technique of limit sensing, normal behavior
is prcdefined  by nominal value ranges for sensors, A funda-
mental limitation of this approach is the lack of sensitivity
to context. In the other traditional monitoring technique of
discrepancy detection, normal behavior is obtained by sinm-
lating a model of the system being monitored. This approach,
wh~le avoiding the insensitivity to context of the limit sensing
approach, has its own limitations, The approach is only as
good as the system model. It can be difficult to distinguish
genuine anomalies from errors in the mode].

Noting the limitations of the existing monitoring tech-
niques, we have developed an approach to monitoring which is
designed to make the anomaly detection process more robust,
i.e., to reduce the number of undetected anomalies. Towards
this end, we introduce multiple anomaly models, each em-
ploying a different notion of “normal” behavior.

2.1 Anomaly Detection Methods

In this section, we briefly describe some of the methods that
we use to determine when a sensor is reporting anomalous be-
havior. These measures use knowledge about each individual
sensor, without knowledge of any relations among sensors.

Surprise
An appealing way to assess whether current behavior is

anomalous or not is via comparison to past behavior, This
is the essence of the surprise measure. It is designed to
highlight a sensor which behaves other than it has historically.
Specifically, surprise uses the historical frequency distribution



for the sensor in two ways: ‘Io determine the likelihood of
the given current value of the sensor (unusualness), and to
examine the relative likelihoods of different vahrcs  of the
sensor (i~~for~?~atit’c)~css).  1( is those sensors which display
unlikely values when other values of the sensor arc more
likely which get a high surprise score. Surprise is not high
if the only reason a sensor’s value is unlikely is that there are
many possible values for the sensor, all equally unlikely.

Alarm Anticipation
‘1’hc alartn anticipa~ion  measure in SELMON  performs a

simple  form of trend analysis to decide whether or not a sensor
is expcctcd  to bc in alarm in the future. A straightforward
curve tit is used to project when the sensor will next cross an
alarm threshold, in either direction. A high score means the
sensor will soon enter alarm or will remain there. A low score
means the sensor will remain in the nominal range or emerge
from alarm soon.

Value Change
A change in the value of a sensor may be indicative of an

anomaly. In order to better assess such an event, the value
chmge  measure in SELMON compares a given value change
to historical value changes seen on that sensor. The score
reported is based on tbe proportion of previous value changes
which were less than the given value change. It is maximum
when tbc given value change is the greatest value change seen
to date on that sensor. It is minimum when no value change
has occurred in that sensor.

Space limitations preclude describing additional SELMON
anomaly measures which reason about individual sensors and
about system interactions through the use of a causal model.

2.2 Previous Results

In order to assess whether SELMON increased the robustness
of the anomaly detection process, we performed the following
experiment: We compared SELMON performance to the per-
formanceof the traditional limit sensing technique in selecting
criticrrl sensor subsets specified by a Space Station Environ-
mental Control and Life Support System (ECLSS) domain
expert, sensors seen by that expert as useful in understanding
episodes of anomalous behavior in actual historical data from
IICLSS testbcd operations.

The experiment asked the following specific question: How
often did SELMON  place a “critical” sensor in the top half of
its sensor ordering based on the anomaly detection measures?

The performance of a random sensor selection algorithm
would be expcctcd to be about 5070; any particular sensor
would appear in the top half of the sensor ordering about half
the time. Limit sensing detected the anomalies 76.3% of the
time. SELMON  detected the anomalies 95.190 of the time.

These results show SELMON performing considerably bet-
ter than the traditional practice of limit sensing. They lend
credibility to our premise that the most effective monitoring
systcm is one which incorporates several models of anoma-
lous behavior. Our aim is to offer a more complete, robust
set of techniques for anomaly detection to make human oper-
ators more effective, or to provide the basis for an automated
monitoring capability.

The following is a specific example of the value added of
SELMON. During an episode in which the ECLSS pre-heater

failed, systeln pressure (which normally oscillates within a
known range) bccamc stable. This “abnormally normal” be-
havior is not dctcctcd by traditional monitoring methods be-
cause the systcm pressure remains firmly in the nominal range
where limit sensing fails to trigger. I brtbcrmorc,  the fluctuat-
ing behavior of the sensor is not modeled; the predicted value
is an averaged stable value which fails to trigger discrepancy
detection,

3 Attention Focusing

A robust anomaly detection capability provides the core for
monitoring, but only when this capability is combined with
attention focusing dots monitoring become both robust and
efficient. Otherwise, the potential problems of information
overload and too many false alarms may defeat the utility of
the monitoring system.

Although many anomalies can bc detected by applying
anomaly models to the behavior repelled  at individual sen-
sors, monitoring also requires reasoning about interactions
occurring in a system and detecting anomalies in behavior
reported by several sensors.

The attention focusing technique developed here uses two
sources of information: historical data describing nominal
system behavior, and causal information describing which
pairs of sensors are constrained to be correlated, due to the
presence of a dependency. The intuition is that the origin and
extent of an anomaly can be determined if the misbehaving
system parameters and the misbehaving causal dependencies
can be identified.

3.1 ‘IWO Additional Measures
While SELMON runs, it computes incremental frequency dis-
tributions for all sensors being monitored. These frequency
distributions can be saved as a rnethocl for capturing behav-
ior from any episode of interest. Of particular interest are
historical distributions which correspond to nominal system
behavior.

To identify an anomalous sensor, we apply a distance mea-
sure, defined below, to the frequency distribution which rep-
resents recent behavior to the historical frequency distribution
representing nominal behavior. We call the measure simply
distance. To identify a “broken” causal dependency, wc first
apply the same distance measure to the historical frequency
distributions for the cause sensor and the effect sensor. This
reference distance is a weak representation of the correlation
that exists between the values of the two sensors due to the
causal dependency. This reference distance is then compared
to the distance between the frequency distributions based on
recent data of the same cause sensor and effect sensor. The dif-
ference between the reference distance and the recent distance
is the measure of the “brokenness” of the causal dependency.
We call this measure causal distance.

3.2 Sonic Definitions

Define a distribution D as the vector di such that

Vi, O<di<l

and
n - 1

~di=l

id)
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I’or a sensor S, we assume that the range of values for the
sensor has been partitioned into n contiguous subranges which
exhaust this range. Wc construct a frequency distribution as a
vector 1)s of length n, where the vahrc of di is the frequency
with which S has displayed a value in the ith subrangc,

We define two special types of frequency distribution. I-et
J’ be the random, or flat distribution where Vi, di == ~. I-d
Si be the set of “spike” distributions where di = 1 and Vj #
i.di = O.
‘ l; our aim was only to compare different frequency distri-

butions of the same sensor, wc could use a distance measure
which required the number of partitions, or bins in the two
distributions to be equal, and the range of values covered by
the distributions to bc the same. However, since our aim is
to be able to compare the frequency distributions of different
sensors, these conditions must be relaxed.

3.3 The l)istancc Measure

The distance measure is computed by projecting the two dis-
tributions into the two-dimensional space [j,s] in polar coor-
dinates and taking the euclidian distance between the projec-
tions.

Define the “flatness” component ~(D) of a distribution as
follows:

This is simply the sum of the bin-by-bin differences be-
tween the given distribution and F. Note that O < ~(D)  <1.
Also, f(Si) --.1 as ti -i ~.

Define the “spikeness” component s(D) of a distribution
as:

This is simply the centroid value calculation for the distri-
bution. The weighting factor O will be explained in a moment.
Once again, 0< s(D) <1.

Now take [$,s]  to ‘be polar coordinates [r, 6]. This maps
F to the origin and the Si to points along an arc on the unit
circle. Sec Figure 1.

Note that we take @ = $. This choice of # guarantees
that A(SO, Sn_I) = A(F, SO) = A(F, S~_I ) = 1 and all
other distances in the region which is the range of A are by
inspection < 1.

lnsensitiwty to the number of bins in the two distributions
and the range of values encoded in the distributions is provided
by the [f,s] projection function, which abstracts away from
these properties of the distribut ions.

Additional details on desired properties of the distance mea-
sure and how they are satisfied by the function A may be found
in [1].

3.4 Results

In this section, we report on the results of applying the dis-
tribution distance measure to the task of focusing attention
in monitoring. The distribution distance measure is used to
identify misbehaving nodes (distance) and arcs (causal  dis-
tance) in the causal graph of the system being monitored, or
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I~igure 1: The function A(.DI, D2).

equivalently, detect and isolate the extent of anomalies in the
system being monitored.

Figure 2 shows a causal graph for a portion of the For-
ward Reactive Control System (IRCS)  of the Space Shuttle.
SFLMON  was run on seven episodes describing nominal behav-
ior of the FRCS. The frequency distributions collected during
these runs were merged. Reference distances were computed
for sensors participating in causal dependencies.

SWMON  was then run on 13 different fault episodes, rep-
resenting faults such as leaks, sensor failures and regulator
failures. Due to space limitations, only one of these episodes
will bc examined here; results were similar for all episodes.
In each fault episode, and for each sensor, the distribution
distance measure was applied to the incremental frequency
distribution collected during the episode and the historical fre-
quency distribution from the merged nominal episodes. These
distances were a measure of the “brokenness” of nodes in the
causal graph; i.e., instantiation of the distance measure.

New distances were computed between the distributions
corresponding to sensors participating in causal dependencies.
The differences between the new distances and the reference
distances for the dependencies were a measure of the “bro-
kenness” of arcs in the causal graph; i.e., instantiation of the
causal  distance measure.

The episode of interest involves a leak affecting the first
and second manifolds (jets) on the oxidizer side of the FRCS.
The pressures at these two manifolds drop to vapor pressure.
The dependency between these pressures and the pressure in
the propellant tank is severed because the valve between the
propellant tank and the manifolds is closed, Thus there are
two anomalous system parameters (the manifold pressures)
and two anomalous mechanisms (the agreement between the
propellant and manifold pressures when the valve is open).

The distance and causal distance measures computed for
nodes and arcs in the FRCS causal graph reflect this faulty
behavior, See Figure 3. (To visualize. how the distribution
distance measure circumscribes the extent of anomalies, the
coloring of nodes and the width of arcs in the figure are cor-
related with the magnitudes of the associated distance and
causal distance scores, respcctivcly).  The apparent anomaly
at the third manifold is due to a known flaw in the training
simulator which generated the data. The explanation for the
apparent helium tank temperature anomaly is more interest-
ing: in response to the leak, the valve’between  the propellant
tank and the manifolds closes. The closed system now has
a smaller volume, and since the pressure remains the same,
temperature must rise according to the ideal gas law. SELMON
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I~igurc 2: Causal Graph for the Fonvard  Reactive Control
System (FRCS) of the Space Shuttle.

00

%

00  008

0 0 0 Ot

00° 009
0!4

o m

00 00
0 01s

o m
02)  030

00
00  00 00

00

Figure 3: A leak fault.

flags this behavior as anomalous, even though the relevant
causal dependency” was not available in the model. In this
case, SELMON helped debug an incomplete model. This he-
lium tank temperature behavior was present in the data for all
six leak episodes.

4 Towards Applications

The approach described in this paper has usability advantages
over other forms of model-based reasoning. The overhead in-
volved in constructing the causal and behavioral model of the
system is minimal. The behavioral model is derived directly
from actual data; no offline modeling is required. The causal
model is of the simplest form, describing only the existence of
dependencies. For the Shuttle RCS, a 198-node causal graph
was constructed in a single one and one half hour session
between the author and the domain expert.

SELMON is being applied at the NASA Johnson Space Cen-
ter as a monitoring tool for Space Shuttle Operations and
Space Station Operations. Early applications include the one
for the Propulsion (PROP) flight control discipline reported
on here, and ones for the Thermal (EFIOM)  and Mechanical
(MMACS) flight control disciplines. An operational SELMON
prototype is available for evaluation by all flight control dis-
ciplines, only requiring that a list of sensors “owned” by that
discipline be provided.

At the Jet Propulsion Laboratory, we are looking at the
problem of onboard downlink determination for the Pluto Fast
Flyby project, now in its early design phase. The spacecraft
will have limited communications capacity and it will not be
possible to transmit all onboard-collected  sensor data. Only
four hours of coverage from the Deep Space Network will be

available per week. The challenge is to devise a method for
constructing a suitable summary of a week’s worth of sensor
data guaranteed to report on any anomalies which occurred.
The anomaly detection and attcnlion focusing capabilities of
SELMON  may bc well-suited to this task.

5 Summary

We have dcscribcd the properties and performance of a dis-
tance measure used to identify misbehavior at sensor loca-
tions and across mechanisms in a systcrn being monitored.
The technique enables the locus of an anomaly to be deter-
mined. This attention focusing capability is cornbincd with a
previously reported anomaly detection capability in a robust,
efficient and informative monitoring system, which is being
applied in mission operations at NASA.

6 Acknowledgements

The members of the SELMON team are. Len Charest,  Dennis
DeCoste,  Nicolas Rouquette and Jay Wyatt. Harry Porta
provided valuable mathematical and counterexarnp]e  insights
during the development of the distance measure. Matt Barry
and Charles Robertson provided valuable discussion. Matt
Barry also served invaluably as domain expert for the Shuttle
FRCS .

The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

References

1]

2]

R. Doyle, “A Distance Measure for Anomaly DetexXion
and Attention Focusing in Systems Monitoring,” 8~h in-
ternational  Workshop on Qualitative Reasoning about
Physical System,  Nara, Japan, June 1994.

R. Doyle, L. Charest,  Jr., N. Rouquette,  J. Wyatt, and C.
Robertson, “Causal Modeling and Event-driven Simula-
tion for Monitoring of Continuous Systems,” Computers

[3]

[4]

5]

in Aerospace 9, A~nerican  Institute-of Aeronautics and
Astronautics, San Diego, California, October 1993.

R. Doyle, S. Chien, U. Fayyad, and J. Wyatt, ‘(F o -
cused Real-\irne Systems Monitoring Based on Multiple
Anomaly Models:’ 7th International Workshop on Qual-
itative Reasoning about  Physical Systems, Eastsound,
Washington, May 1993.
T. Hill, W. Morris, and C. Robertson, “Implementing
a Real-time Reasoning System for Robust Diagnosis,”
6th Annual Workshop on Space CJperationsApplicatiotts
and Research, Houston, Texas, August 1992.

J. Muratore, T. Heindel, T. Murphy, A. Rasmussen, and
R. McFarland, “Space Shuttle Telemetry Monitoring by
Expert Systems in Mission Control:’  in innovative Ap-
plications of Arttjicial  Intelligence, H. Schorr and A.
Rappaport  (eds.), AAAI Press, 1989.


